
Helping Everyone Create with Computing
Mark Guzdial
School of Interactive Computing

The Two Cultures

Story
•  Computing is important for more than just those who choose

to major in computing.
•  Who are those (the majority) who need computing but won’t major in

computing? What do they need from CS, and why aren’t in CS classes?
How do they now learn CS?

•  It is the job of computer scientists to teach everyone to create
with computer science, explicitly, programming.

•  How do we teach CS to those who do not want to become
software engineers or computer scientists?
•  Story #1: The Story of Computing for All at Georgia Tech.

•  How we’ve used and failed at on-line learning

•  Story #2: “Teaching” Graphics Designers about Computer Science.
•  Story #3: Understanding the Needs of High School Teachers Learning

Computer Science

.

The typical CS student:  
Future Software Engineer

• To produce reliable,
robust, secure software.

• To work in
interdisciplinary teams.

• To use appropriate
design notations, such as
UML.

• To work in multiple
programming languages.

High School Participation in  
AP STEM Disciplines

— Chris Stephenson, CSTA, 2010	

Who else needs or wants  
what CS has to offer?
•  Computing is at the core of the modern society and modern

economy.
•  Computing is key to innovation in many disciplines.

• Computer Science has a much larger potential
audience beyond software developers.
• Estimates:

~13 million non-professional programmer/end-user
programmers in US by 2012,
vs.
~3 million professional software developers (Scaffidi,
Shaw, & Myers, 2005)

6

An atypical CS student:  
Future computational scientist or engineer

•  To use computation as a tool to
enhance understanding.

•  To write programs of (at most) 100
lines (most often, 10 lines) for
themselves.
•  They care about the products of the

programs, not the programs.

•  To learn as few languages as are
needed for their tasks.

•  To work in interdisciplinary teams,
including software engineers.

An atypical CS student:  
Future high school CS teacher
•  To use code to explore and

understand ideas of
computation.

•  To learn what languages are
necessary to meet standards
and engage students.

•  To work with students with a
wide range of interests.
•  Probably won’t work with professional

software engineers

An atypical CS student:  
Future graphics designer

•  To write programs to improve
their efficiency, and to
implement their dynamic (e.g.,
Web) designs.

•  To do as little coding as
possible.

•  To learn about computing ideas
in order to improve their
process, but with a focus on
people and creativity.
•  Probably won’t work with professional

software engineers

How do meet this need?
• Our track record for the first CS course is

poor.
• 30-50% failure or withdrawal rates (Bennedsen &

Caspersen, 2007)

• Other majors tend to be more female and
more ethnically diverse than the typical
computing student.
• Our track record with these audiences is

particularly poor (Margolis & Fisher, 2003)

Us?

• Is it the job of
computer science to
teach computer
science to everyone?

• Do they want what we
have to offer?

1961 MIT Sloan School  
Symposium

Learn Programming  
to Re-Think Process Everywhere

•  Alan Perlis argued that
computer science should be
part of a liberal education.
• Explicitly, he argued that all

students should learn to
program.

• Why?
• Because Computer Science

is the study of process.
• Automated execution of

process changes everything
•  Including how we think about

things we already know

“A handful of people,
having no relation to the
will of society, having no
communication with the
rest of society, will be
taking decisions in secret
which are going to affect
our lives in the deepest
sense.”

The Power and Fear of Algorithms
•  The Economist (Sept., 2007)

spoke to the algorithms that
control us, yet we don’t
understand.
•  Credit Ratings, Adjustable Rate

Mortgages, Search Rankings

•  C.P. Snow foresaw this in
1961.
•  Those who don’t understand

algorithms, can’t understand
how the decisions are made.

Richard Dawkins on  
Biology as Computer Science
•  On US National Public Radio in April 2007:

•  GROSS: You close your book saying, "I am thrilled to be alive at
a time when humanity is pushing against the limits of
understanding." How do you think that's happening in your
field of evolutionary biology?

• Mr. DAWKINS: Well, it's the most exciting time to be a
biologist… Since Watson and Crick in 1953, biology has
become a sort of branch of computer science. I
mean, genes are just long computer tapes, and they use a
code which is just another kind of computer code. It's
quaternary rather than binary, but it's read in a sequential way
just like a computer tape. It's transcribed. It's copied and
pasted. All the familiar metaphors from computer
science fit.

Three Non-Traditional Audiences
• Story #1: The Story of Computing for All at Georgia

Tech.
• Story #2: “Teaching” Graphics Designers about

Computer Science.
• Story #3: Understanding the Needs of High School

Teachers Learning Computer Science

Story #1: Teaching  
Computing to Everyone

• Fall 1999:
All students at Georgia Tech must take a course in
computer science.
• Considered part of General Education, like mathematics,

social science, humanities…

• 1999-2003: Only one course met the requirement.
• Shackelford’s pseudocode approach in 1999

• Later Scheme: How to Design Programs (MIT Press)

One-class CS1: Pass (A, B, or C) vs.  
WDF (Withdrawal, D or F)

Success Rates in CS1 from Fall 1999 to
Spring 2002 (Overall: 78%)

Architecture 46.7%

Biology 64.4%

Economics 53.5%

History 46.5%

Management 48.5%

Public Policy 47.9%

Contextualized Computing Education
• What’s going on?

•  Research results: Computing is “tedious,
boring, irrelevant”

•  Since Spring 2003, Georgia Tech
teaches three introductory CS
courses.
•  Based on Margolis and Fisher’s

“alternative paths”
•  Each course introduces computing

using a context (examples, homework
assignments, lecture discussion)
relevant to majors.
•  Make computing relevant by teaching it in

terms of what computers are good for
(from the students’ perspective)

20

Our Three CS1’s Today
• CS1301/1321 Introduction to Computing

Traditional CS1 for our CS majors and
Science majors (math, physics, psychology,
etc.). Now, uses robots.

• CS1371 Computing for Engineers
CS1 for Engineers. Same topics as
CS1301, but using MATLAB with
Engineering problems.

• CS1315 Introduction to Media
Computation for Architecture,
Management, and Liberal Arts students.

Media Computation:  
Teaching in a Relevant Context
• Presenting CS topics with

media projects and
examples
•  Iteration as creating negative

and grayscale images
•  Indexing in a range as removing

redeye
• Algorithms for blending both

images and sounds
• Linked lists as song fragments

woven to make music
•  Information encodings as sound

visualizations

21

def negative(picture):
 for px in getPixels(picture):
 red=getRed(px)
 green=getGreen(px)
 blue=getBlue(px)
 negColor=makeColor(255-red,255-green,255-blue)
 setColor(px,negColor)

def clearRed(picture):
 for pixel in getPixels(picture):
 setRed(pixel,0)

def greyscale(picture):
 for p in getPixels(picture):
 redness=getRed(p)
 greenness=getGreen(p)
 blueness=getBlue(p)
 luminance=(redness+blueness+greenness)/3
 setColor(p, makeColor(luminance,luminance,luminance))

23

Open-ended, contextualized homework  
 in Media Computation CS1 & CS2

Sound collage

Linked list as
canon	

Results:CS1“Media Computation”
Change in Success rates in CS1 “Media
Computation” from Spring 2003 to Fall
2005
(Overall 85%)
Architecture 46.7% 85.7%

Biology 64.4% 90.4%

Economics 54.5% 92.0%

History 46.5% 67.6%

Management 48.5% 87.8%

Public Policy 47.9% 85.4%

Results at Other Schools

•  Similar retention results at 2
year public Gainesville College
(Tew, Fowler, Guzdial, SIGCSE
2005) and at (much more
diverse) U. Illinois-Chicago’s
CS0.5 (Sloan & Troy, SIGCSE
2008)

•  Would you like more CS?
•  GT 15.2% “Strongly Disagree.”

<25% agree.
•  More MediaComp? GT and

Gainesville over 40% agree.

(Tew, Fowler,
Guzdial,
SIGCSE
2005)

Using the first Wiki for undergraduate learning

Role of the Homework “Galleries”
Q: What do you think about the homework galleries on the

CoWeb?
Student 4: It's nice to see other people, like what they did with

it… And there is no better feeling than getting something
done and knowing that you've done it right.

Student 3 (Female, INTA): I don't ever look at it [the homework
gallery] until after I'm done. I have a thing about not wanting
to copy someone else's ideas. I just wish I had more time to
play around with that and make neat effects. But JES [IDE
created for this class] will be on my computer forever, so…
the nice thing about this class is that you could go as deep
into the homework as you wanted. So, I'd turn it in, and then
me and my roommate would do more after to see what we
could do with it.

Anecdotes from  
Engineering and Math

• On a mandatory assignment involving a math class
studying results from Engineering students’
simulations, 40% of math students accepted a zero
rather than collaborate with engineers.

• We provided an Equation Editor in the CoWeb for an
Engineering and a Math course to facilitate talking
about equations. Not a single student even tried the
Editor.

• Changed the focus of our research: Why not
participate?

Competition

• Student quotes on “Why didn’t you participate
in CoWeb?”
 “1) didn't want to get railed 2) with the curve it is
better when your peers do badly”
 “since it is a curved class most people don’t want
others to do well”

Note: Students claimed that the course
grades were “curved” even when there
was none.

Learned helplessness
• Student quotes:

 “I haven't posted about questions because I am confident that my
answers are wrong.”
 “I thought I was the only one having problem understanding what was
asked in the exam.”
 “Who am I to post answers?”
 “The overall environment for [this class] isn't a very help-oriented
environment.”

Bottom line: Collaboration may not “just work” in Engineering/
Math/CS -- not without an explicit focus to make it work.

Story #2: Graphics Designers 
who program
•  Brian Dorn studied graphics

designers who program.
•  Conducted a series of

interviews and assessment
activities.

•  Found that these subjects
want more computer
science, but don’t find
courses (and most other
resources) adequate (Dorn
& Guzdial, ICER 2010)

• P10: So, that was a
really long way of saying
yes, I think that an
academic study would
make me a better
programmer, but not by
a whole lot.

Who are graphics
designers who program?

• Mostly arts/media
trained.

• Don’t consider
themselves
programmers.

• But do some significant
automation of their
process.

32

Dorn & Guzdial, ICER 2006

Where are they getting their  
CS knowledge?

• Mostly on-line:
• FAQs and other

documentation
• Books (when applicable)
• Lots of examples and

networking.

• Not so much classes

33

Dorn & Guzdial, CHI 2010

What do software engineers do? 
Answer: The Boring Stuff.

•  P2: I was able to take different samples from different places
and instead of just being let's say an MIS major, or computer
science major, you know it's—you're not going to be front-end
anything with computer science. You're going to be back-end
everything.

•  P4: I think as a front-end developer, you focus more on the
design and the usability, and you're focusing more on the
audience. And then on the back-end I think you're focused on
more, these are like the software developers. And they're
programming something, and they don't really see what it's
gonna look like; they're just making it work.

Who is in CS?
•  Like Yardi and Bruckman (ICER 2007), participants held negative

stereotypes of those in CS:

•  P2: I went to a meeting for some kind of programmers, something or
other. And they were OLD, and they were nerdy, and they were boring! And
I'm like, this is not my personality. Like I can't work with people like that.
And they worked at like IBM, or places like that. They've been doing, they
were working with Pascal. And I didn’t…I couldn't see myself in that
lifestyle for that long.

•  P5: I don't know a whole ton of programmers, but the ones I know, they
enjoy seeing them type up all these numbers and stuff and what it makes
things do. Um, whereas I just do it, to get it done and to get paid. To be
honest. The design aspect is what really interests me a lot more.

35

Why don’t they take CS classes?
•  P7: I started out in computer science, but didn't like it at all.

The fact that I wasn't learning anything new. I took an intro to
programming course, and then I talked to some other people
in the program and it was all repetition and I guess there
wasn't any really new. So you weren't really learning any
concepts. You were learning the languages, and I didn't like
that at all. So that's why I left…

• Do we just teach languages?
Why don’t they see the concepts?

36

They are not afraid of coding
•  “What interests you about web design?”
• P12: The coding! I don't like to code. But the things

that the code can do is amazing, like you can come
up with this and voila, you know, it's there. Javascript
for one. The plugins and stuff. I think that's very
interesting, intriguing and stuff. Because I mean like
the code is just, there's so much you can do with
code and stuff. It's just like wow.

They want to know more
•  P1: So I mean technology changes. So what I am ideally

looking to focus on are like the foundation. The things that
change less, you know what I'm saying? Like computer
science um, theory, you know I'm saying I mean? That kind of
like, it's applicable to what I do, and it's not so constantly
shifting.

•  P10: I was the kind of programmer that could make stuff
work. But I didn't really have solid understandings. At one
point I picked up a book on design patterns and I looked at it,
and I was like that's really, that's really interesting…So I was
like well I wanna keep doing that because it made me a
better programmer. And it was more fun to program, and it
was more thought provoking.

38

They’re Lost without Initial Knowledge
•  Learning less than they might because of a lack of

deep knowledge.
• For example: Exploring code by searching Google for

function and variable names.
• Learning about Java when programming in JavaScript

• Brian’s experiment: Given a case library with
conceptual information vs. a code repository alone,
what gets learned, used, and liked? (ICER 2011)

40

Bottomline: Cases work

• They like the cases.

• They code the same.

• Case-users learn the concepts, while
repository users do not.

• Suggests how we might help non-CS
professionals who discover computing late.

41

Story #3: High School teachers  
need a new pedagogy

•  For the most part, we teach CS as apprenticeship.
• We model (lecture), students practice (code),

we try to coach.

• Practice is always important.
Do we rely on it too much?
• Are we more like STEM or Architecture?
• Claim: No other science and engineering field teaches so

much through practice.

• Result: CS pedagogy is time-consuming.

Problem:  
Too little secondary school CS

What makes a “Computer Science”  
high school teacher?

• High school teachers who self-identify as a kind of
teacher are more likely to be retained, seek
professional development, and join a professional
community.

• But most teacher identity is tied to certification.
• CS teacher certification does not exist in most states.

• How do teachers of CS identify themselves?
How do they develop an identity as a CS teacher?
(Lijun Ni, 2011 thesis)

Teachers feel a need for more training

•  [Becky]: “I struggle with giving everyone the material and
being able to explain it to everyone… I struggle with how to be
creative with the programming. I have a problem with trying
to make the programs have meaning to them... It is hard to
teach. It’s hard knowing how to teach it, how to give it to
them… It’s hard to explain. When I look at kid’s codes, they
think I should know it… They think that I should know it as
soon as I look at it. For the longest time I thought I should,
but I don’t have to. I have to study it just like they do. So, I
would like some training.”

Easier with Support

• Confidence: More confident in teaching Math
 [John]: “I still think I’m a better Math teacher, just because

I’ve had so much support. Whenever I have problems, I can
talk with the people that I work with, most of who have
taught for many years in Math… With Computer Science,
I’ve got nobody to talk to.”

They may find CS inaccessible
•  [May]: “I think, computer science is more for really, really

smart people. I’m not saying I’m smart, but I’m thinking that if
I have to go take this Computer Science degree, that it’s
going to be really hard, because it’s going to ask a lot of
programming questions, syntax questions. I think computer
science is a much higher level… When I say computing, I
think of computing as being able to operate the computer, … I
believe that most students can successfully take and
complete Computing in the Modern World, but it takes a little
higher level of intelligence to complete the Introduction to
Programming

How do we teach working  
high school teachers?

• Study of adult/professional students in CS
classes.
• They don’t have the time to spend hours in front

of the IDE.
• Lacking background, e.g., in mathematics.
• They get stymied by small errors.

Trying to teach CS more Efficiently
•  Using a model of a book, but with live code and Ed Psych

principles:

Conclusions
•  Computing is important to let everyone create.

It’s the job of computer scientists to give it to everyone

•  Story #1: Non-CS Major students succeed with contexts.

•  Story #2: End-user programmers want what CS has to offer,
and there are more of them than there are professional
software developers. But they don’t know enough CS to teach
themselves effectively.

•  Story #3: Teachers don’t know enough computer science,
want more training, but existing methods don’t work well for
them.

With thanks to our supporters
• US National Science Foundation

•  Statewide BPC Alliance: Project “Georgia Computes!” http://www.gacomputes.org
•  CCLI and CPATH Grants, and now CE21 to produce new media

• Microsoft Research

• Georgia Tech's College of Computing

• Georgia’s Department of Education

• GVU Center,

• GT President's Undergraduate Research Award,

• Toyota Foundation

Thank you!
•  http://www.cc.gatech.edu/~mark.guzdial

http://home.cc.gatech.edu/csl

http://www.georgiacomputes.org

For more on CSLearning4U:
•  http://home.cc.gatech.edu/csl/CSLearning4U

For more on MediaComp
approach:

•  http://www.mediacomputation.org

Spare Slides

Can we teach more of CS 
more efficiently?
• Matt Jadud [2006] (and others) has shown us how

small Java errors can lead to an enormous waste of
time.
•  Can we teach about variables, behavior, how loops work, how

conditionals behave – without a half hour of “where goes the semi-
colon”?

• Can we reduce the wasted time?
• Analogy: Does coursework in a foreign language make it

easier to be immersed in the new language, or is
immersion the only way to learn?

• New NSF CE21 Project: CSLearning4U
http://home.cc.gatech.edu/csl/CSLearning4u

Introducing Computing in an  
Engineering Context

•  Developed in collaboration with
Civil, Mechanical, and Aerospace
Engineering.

•  Uses Engineering problems and
MATLAB

•  Covers traditional CS1 topics

•  Among our 3 CS1’s, these are the
first students to program outside
of class.

•  The success rate in this class also
rose compared to all-in-one.

Comparing Spring 2004

CS for Engineers: ~1200 students/semester	

Media Comp: ~300 students/semester	

CS for CS majors: ~150 students/semester	

A Context for CS1 for  
CS majors: Robotics

• Microsoft Research has
funded the Institute for
Personal Robotics in
Education
–  Leads: Tucker Balch, Deepak Kumar,

Doug Blank
–  Joint between Bryn Mawr College and

Georgia Tech
–  http://www.roboteducation.org

• Developing a CS1 with
robotics as the context.

Results at  
University of California, San Diego

• Using Java Media
Computation as normal CS1
for CS majors at a research
university.

• Did extensive data collection
last semester before
switching to Media
Computation.

• Been following two cohorts
of CS1 students for
comparison.

Simon, Kinnunen, Porter, Zaskis,
ACM ITICSE 2010

Findings:	

•  MediaComp has
more focus on
problem-solving, less
on language. ���

•  MediaComp
students have higher
pass rates and
retention rates one
year later	

The Two Cultures

Does it have to be programming?
• Elias:	 If	 the	 computers,	 together	 with	 suf3iciently	
ingenious	 languages	 and	 programming	 systems,	 are	
capable	 of	 doing	 everything	 that	 Professor	 Perlis	
describes—and	 I	 believe	 they	 are	 (and	 more)—then	
they	 should	 be	 ingenious	 enough	 to	 do	 it	 without	
the	 human	 symbiote	 being	 obliged	 to	 perform	 the	
mechanical	 chores	 which	 are	 a	 huge	 part	 of	 current	
programming	 effort,	 and	 which	 are	 a	 large	 part	 of	
what	 must	 now	 be	 taught	 in	 the	 introductory	 course	
that	 he	 proposes.	

61

Why programming
•  Licklider:	 Peter,	 I	 think	 the	 3irst	 apes	 who	 tried	 to	 talk	 with	
one	 another	 decided	 that	 learning	 language	 was	 a	 dreadful	
bore…But	 some	 people	 write	 poetry	 in	 the	 language	 we	
speak.	

•  Perlis:	 The	 purpose	 of	 a	 course	 in	 programming	 is	 to	 teach	
people	 how	 to	 construct	 and	 analyze	 processes…A	 course	 in	
programming	 is	 concerned	 with	 abstraction:	 the	 abstraction	
of	 constructing,	 analyzing,	 and	 describing	 processes…The	
point	 is	 to	 make	 the	 students	 construct	 complex	 processes	
out	 of	 simpler	 ones….A	 properly	 designed	 programming	
course	 will	 develop	 these	 abilities	 better	 than	 any	 other	
course.	

62

